Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F291]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177803
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

District name (district)

Data file: Section_4a

Overview

Valid: 834
Invalid: 0
Type: Discrete
Decimal: 0
Start: 4
End: 5
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
District name
Categories
Value Category Cases
1 Taplejung 13
1.6%
2 Panchthar 0
0%
3 Ilam 19
2.3%
4 Jhapa 31
3.7%
5 Morang 48
5.8%
6 Sunsari 32
3.8%
7 Dhankuta 7
0.8%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 6
0.7%
11 Solukhumbu 17
2%
12 Okhaldhunga 15
1.8%
13 Khotang 7
0.8%
14 Udayapur 18
2.2%
15 Saptari 30
3.6%
16 Siraha 0
0%
17 Dhanusha 13
1.6%
18 Mahottari 18
2.2%
19 Sarlahi 21
2.5%
20 Sindhuli 32
3.8%
21 Ramechhap 0
0%
22 Dolakha 23
2.8%
23 Sindhupalchok 14
1.7%
24 Kabhrepalanchok 11
1.3%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 23
2.8%
29 Rasuwa 0
0%
30 Dhading 37
4.4%
31 Makwanpur 10
1.2%
32 Rautahat 0
0%
33 Bara 11
1.3%
34 Parsa 7
0.8%
35 Chitwan 0
0%
36 Gorkha 5
0.6%
37 Lamjung 5
0.6%
38 Tanahun 8
1%
39 Syangja 6
0.7%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 3
0.4%
44 Parbat 0
0%
45 Baglung 6
0.7%
46 Gulmi 9
1.1%
47 Palpa 6
0.7%
48 Nawalparasi 48
5.8%
49 Rupandehi 40
4.8%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 33
4%
54 Rukum 40
4.8%
55 Salyan 0
0%
56 Dang 13
1.6%
57 Banke 12
1.4%
58 Bardiya 0
0%
59 Surkhet 16
1.9%
60 Dailekh 18
2.2%
61 Jajarkot 24
2.9%
62 Dolpa 0
0%
63 Jumla 3
0.4%
64 Kalikot 18
2.2%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 3
0.4%
68 Bajhang 7
0.8%
69 Achham 7
0.8%
70 Doti 7
0.8%
71 Kailali 21
2.5%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 6
0.7%
75 Darchula 7
0.8%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025