Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-SURVEYS / NPL_2016-2018_HRVS_V01_EN_M_V01_A_OCS / variable [F296]
agricultural-surveys

Household Risk and Vulnerability Survey 2016-2018

Nepal, 2016 - 2018
Get Microdata
Reference ID
NPL_2016-2018_HRVS_v01_EN_M_v01_A_OCS
Producer(s)
The World Bank
Collections
Agricultural Surveys
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 06, 2020
Last modified
Nov 08, 2022
Page views
177787
Downloads
494
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_5
  • Section_0
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14b
  • Section_14c
  • Section_15a
  • Section_15b
  • Section_16
  • Section_17
  • Section_0
  • Section_1
  • Section_2
  • Section_3a
  • Section_3b
  • Section_4a
  • Section_4b
  • Section_5
  • Section_0
  • Section_1
  • Section_2
  • Section_3
  • Section_4
  • Section_5a
  • Section_5b
  • Section_6a
  • Section_6b
  • Section_6c
  • Section_6d
  • Section_7
  • Section_8
  • Section_9a1
  • Section_9a2
  • Section_9a3
  • Section_9a4
  • Section_9b1
  • Section_9b2
  • Section_9c
  • Section_9d
  • Section_9e
  • Section_9f
  • Section_10
  • Section_11
  • Section_12a
  • Section_12b
  • Section_12c
  • Section_12d
  • Section_13a
  • Section_13b
  • Section_13c
  • Section_13d
  • Section_14a
  • Section_14c
  • Section_15b
  • Section_16
  • Section_17
  • Section_16
  • Section_4a
  • Section_4b
  • Section_1
  • Section_11a
  • Section_14b
  • Section_15a

Name of District (district)

Data file: Section_15a

Overview

Valid: 1493
Invalid: 0
Type: Discrete
Decimal: 0
Start: 6
End: 7
Width: 2
Range: 1 - 75
Format: Numeric

Questions and instructions

Literal question
Name of District
Categories
Value Category Cases
1 Taplejung 8
0.5%
2 Panchthar 0
0%
3 Ilam 10
0.7%
4 Jhapa 5
0.3%
5 Morang 21
1.4%
6 Sunsari 6
0.4%
7 Dhankuta 35
2.3%
8 Tehrathum 0
0%
9 Sankhuwasabha 0
0%
10 Bhojpur 24
1.6%
11 Solukhumbu 10
0.7%
12 Okhaldhunga 15
1%
13 Khotang 84
5.6%
14 Udayapur 42
2.8%
15 Saptari 13
0.9%
16 Siraha 0
0%
17 Dhanusha 4
0.3%
18 Mahottari 40
2.7%
19 Sarlahi 73
4.9%
20 Sindhuli 23
1.5%
21 Ramechhap 0
0%
22 Dolakha 5
0.3%
23 Sindhupalchok 16
1.1%
24 Kabhrepalanchok 19
1.3%
25 Lalitpur 0
0%
26 Bhaktapur 0
0%
27 Kathmandu 0
0%
28 Nuwakot 14
0.9%
29 Rasuwa 0
0%
30 Dhading 75
5%
31 Makwanpur 12
0.8%
32 Rautahat 0
0%
33 Bara 53
3.5%
34 Parsa 51
3.4%
35 Chitwan 0
0%
36 Gorkha 46
3.1%
37 Lamjung 42
2.8%
38 Tanahun 54
3.6%
39 Syangja 50
3.3%
40 Kaski 0
0%
41 Manang 0
0%
42 Mustang 0
0%
43 Myagdi 16
1.1%
44 Parbat 0
0%
45 Baglung 36
2.4%
46 Gulmi 21
1.4%
47 Palpa 8
0.5%
48 Nawalparasi 39
2.6%
49 Rupandehi 22
1.5%
50 Kapilbastu 0
0%
51 Arghakhanchi 0
0%
52 Pyuthan 0
0%
53 Rolpa 19
1.3%
54 Rukum 33
2.2%
55 Salyan 0
0%
56 Dang 24
1.6%
57 Banke 47
3.1%
58 Bardiya 0
0%
59 Surkhet 60
4%
60 Dailekh 40
2.7%
61 Jajarkot 38
2.5%
62 Dolpa 0
0%
63 Jumla 7
0.5%
64 Kalikot 25
1.7%
65 Mugu 0
0%
66 Humla 0
0%
67 Bajura 8
0.5%
68 Bajhang 13
0.9%
69 Achham 28
1.9%
70 Doti 72
4.8%
71 Kailali 42
2.8%
72 Kanchanpur 0
0%
73 Dadeldhura 0
0%
74 Baitadi 26
1.7%
75 Darchula 19
1.3%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025