Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-CENSUS / TZA_2002-2003_ASCS_V01_EN_M_V01_A_OCS / variable [F90]
Agricultural-Census

Agriculture Sample Census Survey 2002-2003

United Republic of Tanzania, 2004
Get Microdata
Reference ID
TZA_2002-2003_ASCS_v01_EN_M_v01_A_OCS
Producer(s)
National Bureau of Statistics, Office of Chief Government Statistician-Zanzibar
Collections
Agricultural Censuses
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 24, 2019
Last modified
Oct 24, 2019
Page views
114086
Downloads
3409
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • annual crop and
    vegetable
    production-long
    rainy
    seasonR072
  • annual crop and
    vegetable
    production-short
    rainy
    seasonR071
  • Cattle diseases
    R185
  • Cattle intake
    R183
  • Cattle offtake
    R184
  • Cattle
    population,
    intake and
    offtake R182
  • crop extension
    messages R152
  • crop extension
    services R151
  • crop storage
    R092
  • permanentperennial
    crops and fruit
    tree production
    R073
  • Goat diseases
    R195
  • Goat intake
    during 20022003
    R193
  • Goat offtake
    R194
  • Goat
    population,
    intake and
    offtake R192
  • Goat
    population,
    intake and
    offtake R092_1
  • Goat
    population,
    intake and
    offtakeR092_1
  • Livestock
    extension R291
  • Livestock
    extension
    service
    providers R292
  • Livestock Pest
    and Parasite
    control R220
  • Livestock
    product R250
  • marketing
    problem R102
  • marketing
    problem R103
  • Milk production
    R186
  • Milk production
    R196
  • access and use
    of resources
    R061
  • access to farm
    inputs and
    implements R121
  • access to
    functional
    Livestock
    StructuresaccessoriesR270
  • activities of
    the
    householdR022
  • Agroprocessing
    and
    by-productsR082
  • Animal
    contribution to
    crop production
    R171
  • Chicken
    diseases R240
  • credit for
    Agriculture
    purposesR13_1
  • erosion
    controlwater
    harvesting
    facilities R112
  • farm implements
    and assets used
    and owned by
    the household
    during
    2002-2003 R122
  • Fish farming
    R282
  • household
    information
    R031
  • Household
    information,
    Agriculture
    activities,
    Livestock
    informationR00
  • labour use R311
  • land
    accessownershiptenure
    R041
  • land use R051
  • livelihood
    constraints
    R162
  • livelihood
    constraintsR161
  • other Livestock
    R230
  • outlets for the
    sale of
    Livestock R260
  • related to
    respondent and
    household head
    R122_00
  • tree
    farmingagroforestry
    R142
  • use of
    secondary
    products R076
  • Pig
    diseasespestsconditions
    R215
  • Pig increase
    R213
  • Pig offtake
    R214
  • Pig population
    and production
    R212
  • Sheep diseases
    R205
  • Sheep intake
    R203
  • Sheep offtake
    R204
  • Sheep
    population,
    intake and
    offtake R202
  • R321
  • R331
  • R332
  • use of credit
    for agriculture
    purposes R130
  • use of credit
    for agriculture
    purposes R131
  • use of credit
    for agriculture
    purposes R132

District (District)

Data file: Agroprocessing and by-productsR082

Overview

Valid: 66768
Invalid: 0
Type: Discrete
Width: 3
Range: -
Format: character

Questions and instructions

Categories
Value Category Cases
011 Kondoa 793
1.2%
012 Mpwapwa 570
0.9%
013 Kongwa 552
0.8%
014 Dodoma Rural 654
1%
015 Dodoma Urban 729
1.1%
021 Monduli 172
0.3%
022 Arumeru 359
0.5%
023 Arusha 57
0.1%
024 Karatu 358
0.5%
025 Ngorongoro 254
0.4%
031 Rombo 694
1%
032 Mwanga 382
0.6%
033 Same 440
0.7%
034 Moshi Rural 616
0.9%
035 Hai 310
0.5%
036 Moshi Urban 0
0%
041 Lushoto 690
1%
042 Korogwe 410
0.6%
043 Muheza 735
1.1%
044 Tanga 284
0.4%
045 Pangani 355
0.5%
046 Handeni 441
0.7%
047 Kilindi 393
0.6%
051 Kilosa 634
0.9%
052 Morogoro Rural 597
0.9%
053 Kilombero 676
1%
054 Ulanga 754
1.1%
055 Morogoro Urban 438
0.7%
056 Mvomero 424
0.6%
061 Bagamoyo 124
0.2%
062 Kibaha 221
0.3%
063 Kisarawe 465
0.7%
064 Mkuranga 198
0.3%
065 Rufiji 194
0.3%
066 Mafia 118
0.2%
071 Kinondoni 235
0.4%
072 Ilala 1
0%
073 Temeke 209
0.3%
081 Kilwa 454
0.7%
082 Lindi Rural 848
1.3%
083 Nachingwea 850
1.3%
084 Liwale 753
1.1%
085 Ruangwa 689
1%
086 Lindi Urban 114
0.2%
091 Mtwara Rural 649
1%
092 Newala 964
1.4%
093 Masasi 1376
2.1%
094 Tandahimba 735
1.1%
095 Mtwara Urban 113
0.2%
101 Tunduru 1157
1.7%
102 Songea Rural 1035
1.6%
103 Mbinga 967
1.4%
104 Songea Urban 527
0.8%
105 Namtumbo 1108
1.7%
111 Iringa Rural 502
0.8%
112 Mufindi 508
0.8%
113 Makete 689
1%
114 Njombe 492
0.7%
115 Ludewa 646
1%
116 Iringa Urban 90
0.1%
117 Kilolo 452
0.7%
121 Chunya 605
0.9%
122 Mbeya Rural 514
0.8%
123 Kyela 685
1%
124 Rungwe 849
1.3%
125 Ileje 617
0.9%
126 Mbozi' 1035
1.6%
127 Mbarali 440
0.7%
128 Mbeya Urban 379
0.6%
131 Iramba 641
1%
132 Singida Rural 915
1.4%
133 Manyoni 616
0.9%
134 Singida Urban 342
0.5%
141 Nzega 929
1.4%
142 Igunga 665
1%
143 Uyui 810
1.2%
144 Urambo 746
1.1%
145 Sikonge 755
1.1%
146 Tabora Urban 820
1.2%
151 Mpanda 670
1%
152 Sumbawanga Rural 867
1.3%
153 Nkansi 674
1%
154 Sumbawanga Urban 452
0.7%
161 Kibondo 654
1%
162 Kasulu 681
1%
163 Kigoma Rural 724
1.1%
164 Kigoma Urban 131
0.2%
171 Bariadi 578
0.9%
172 Maswa 504
0.8%
173 Shinyanga Rural 1068
1.6%
174 Kahama 1295
1.9%
175 Bukombe 611
0.9%
176 Meatu 714
1.1%
177 Shinyanga Urban 260
0.4%
178 Kishapu 602
0.9%
181 Karagwe 439
0.7%
182 Bukoba Rural 597
0.9%
183 Muleba 519
0.8%
184 Biharamulo 635
1%
185 Ngara 435
0.7%
186 Bukoba Urban 126
0.2%
191 Ukerewe 523
0.8%
192 Magu 599
0.9%
193 Nyamagana 0
0%
194 Kwimba 782
1.2%
195 Sengerema 834
1.2%
196 Geita 888
1.3%
197 Misungwi 756
1.1%
198 Ilemela 478
0.7%
201 Tarime 1143
1.7%
202 Serengeti 821
1.2%
203 Musoma Rural 568
0.9%
204 Bunda 654
1%
205 Musoma Urban 33
0%
211 Babati 429
0.6%
212 Hanang 371
0.6%
213 Mbulu 430
0.6%
214 Simanjiro 211
0.3%
215 Kiteto 395
0.6%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025