Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-CENSUS / TZA_2002-2003_ASCS_V01_EN_M_V01_A_OCS / variable [V969]
Agricultural-Census

Agriculture Sample Census Survey 2002-2003

United Republic of Tanzania, 2004
Get Microdata
Reference ID
TZA_2002-2003_ASCS_v01_EN_M_v01_A_OCS
Producer(s)
National Bureau of Statistics, Office of Chief Government Statistician-Zanzibar
Collections
Agricultural Censuses
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 24, 2019
Last modified
Oct 24, 2019
Page views
114891
Downloads
3414
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • annual crop and
    vegetable
    production-long
    rainy
    seasonR072
  • annual crop and
    vegetable
    production-short
    rainy
    seasonR071
  • Cattle diseases
    R185
  • Cattle intake
    R183
  • Cattle offtake
    R184
  • Cattle
    population,
    intake and
    offtake R182
  • crop extension
    messages R152
  • crop extension
    services R151
  • crop storage
    R092
  • permanentperennial
    crops and fruit
    tree production
    R073
  • Goat diseases
    R195
  • Goat intake
    during 20022003
    R193
  • Goat offtake
    R194
  • Goat
    population,
    intake and
    offtake R192
  • Goat
    population,
    intake and
    offtake R092_1
  • Goat
    population,
    intake and
    offtakeR092_1
  • Livestock
    extension R291
  • Livestock
    extension
    service
    providers R292
  • Livestock Pest
    and Parasite
    control R220
  • Livestock
    product R250
  • marketing
    problem R102
  • marketing
    problem R103
  • Milk production
    R186
  • Milk production
    R196
  • access and use
    of resources
    R061
  • access to farm
    inputs and
    implements R121
  • access to
    functional
    Livestock
    StructuresaccessoriesR270
  • activities of
    the
    householdR022
  • Agroprocessing
    and
    by-productsR082
  • Animal
    contribution to
    crop production
    R171
  • Chicken
    diseases R240
  • credit for
    Agriculture
    purposesR13_1
  • erosion
    controlwater
    harvesting
    facilities R112
  • farm implements
    and assets used
    and owned by
    the household
    during
    2002-2003 R122
  • Fish farming
    R282
  • household
    information
    R031
  • Household
    information,
    Agriculture
    activities,
    Livestock
    informationR00
  • labour use R311
  • land
    accessownershiptenure
    R041
  • land use R051
  • livelihood
    constraints
    R162
  • livelihood
    constraintsR161
  • other Livestock
    R230
  • outlets for the
    sale of
    Livestock R260
  • related to
    respondent and
    household head
    R122_00
  • tree
    farmingagroforestry
    R142
  • use of
    secondary
    products R076
  • Pig
    diseasespestsconditions
    R215
  • Pig increase
    R213
  • Pig offtake
    R214
  • Pig population
    and production
    R212
  • Sheep diseases
    R205
  • Sheep intake
    R203
  • Sheep offtake
    R204
  • Sheep
    population,
    intake and
    offtake R202
  • R321
  • R331
  • R332
  • use of credit
    for agriculture
    purposes R130
  • use of credit
    for agriculture
    purposes R131
  • use of credit
    for agriculture
    purposes R132

District (District)

Data file: Goat intake during 20022003 R193

Overview

Valid: 29802
Invalid: 0
Type: Discrete
Width: 3
Range: -
Format: character

Questions and instructions

Categories
Value Category Cases
011 Kondoa 729
2.4%
012 Mpwapwa 242
0.8%
013 Kongwa 211
0.7%
014 Dodoma Rural 234
0.8%
015 Dodoma Urban 166
0.6%
021 Monduli 1569
5.3%
022 Arumeru 1004
3.4%
023 Arusha 150
0.5%
024 Karatu 939
3.2%
025 Ngorongoro 950
3.2%
031 Rombo 443
1.5%
032 Mwanga 196
0.7%
033 Same 183
0.6%
034 Moshi Rural 543
1.8%
035 Hai 290
1%
036 Moshi Urban 0
0%
041 Lushoto 199
0.7%
042 Korogwe 223
0.7%
043 Muheza 270
0.9%
044 Tanga 150
0.5%
045 Pangani 194
0.7%
046 Handeni 305
1%
047 Kilindi 248
0.8%
051 Kilosa 140
0.5%
052 Morogoro Rural 308
1%
053 Kilombero 39
0.1%
054 Ulanga 37
0.1%
055 Morogoro Urban 76
0.3%
056 Mvomero 89
0.3%
061 Bagamoyo 100
0.3%
062 Kibaha 16
0.1%
063 Kisarawe 18
0.1%
064 Mkuranga 25
0.1%
065 Rufiji 93
0.3%
066 Mafia 12
0%
071 Kinondoni 97
0.3%
072 Ilala 8
0%
073 Temeke 51
0.2%
081 Kilwa 55
0.2%
082 Lindi Rural 92
0.3%
083 Nachingwea 45
0.2%
084 Liwale 35
0.1%
085 Ruangwa 34
0.1%
086 Lindi Urban 36
0.1%
091 Mtwara Rural 101
0.3%
092 Newala 182
0.6%
093 Masasi 61
0.2%
094 Tandahimba 140
0.5%
095 Mtwara Urban 10
0%
101 Tunduru 109
0.4%
102 Songea Rural 311
1%
103 Mbinga 663
2.2%
104 Songea Urban 135
0.5%
105 Namtumbo 480
1.6%
111 Iringa Rural 63
0.2%
112 Mufindi 89
0.3%
113 Makete 242
0.8%
114 Njombe 310
1%
115 Ludewa 265
0.9%
116 Iringa Urban 7
0%
117 Kilolo 115
0.4%
121 Chunya 94
0.3%
122 Mbeya Rural 234
0.8%
123 Kyela 5
0%
124 Rungwe 52
0.2%
125 Ileje 191
0.6%
126 Mbozi' 171
0.6%
127 Mbarali 172
0.6%
128 Mbeya Urban 140
0.5%
131 Iramba 366
1.2%
132 Singida Rural 399
1.3%
133 Manyoni 160
0.5%
134 Singida Urban 187
0.6%
141 Nzega 323
1.1%
142 Igunga 280
0.9%
143 Uyui 210
0.7%
144 Urambo 176
0.6%
145 Sikonge 207
0.7%
146 Tabora Urban 170
0.6%
151 Mpanda 350
1.2%
152 Sumbawanga Rural 419
1.4%
153 Nkansi 252
0.8%
154 Sumbawanga Urban 245
0.8%
161 Kibondo 553
1.9%
162 Kasulu 166
0.6%
163 Kigoma Rural 211
0.7%
164 Kigoma Urban 43
0.1%
171 Bariadi 214
0.7%
172 Maswa 210
0.7%
173 Shinyanga Rural 230
0.8%
174 Kahama 275
0.9%
175 Bukombe 411
1.4%
176 Meatu 297
1%
177 Shinyanga Urban 258
0.9%
178 Kishapu 344
1.2%
181 Karagwe 327
1.1%
182 Bukoba Rural 338
1.1%
183 Muleba 286
1%
184 Biharamulo 490
1.6%
185 Ngara 508
1.7%
186 Bukoba Urban 39
0.1%
191 Ukerewe 388
1.3%
192 Magu 277
0.9%
193 Nyamagana 0
0%
194 Kwimba 223
0.7%
195 Sengerema 355
1.2%
196 Geita 394
1.3%
197 Misungwi 247
0.8%
198 Ilemela 149
0.5%
201 Tarime 399
1.3%
202 Serengeti 317
1.1%
203 Musoma Rural 349
1.2%
204 Bunda 263
0.9%
205 Musoma Urban 55
0.2%
211 Babati 624
2.1%
212 Hanang 320
1.1%
213 Mbulu 435
1.5%
214 Simanjiro 655
2.2%
215 Kiteto 222
0.7%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025