Login
Login
|
Microdata at FAO
    Home / Food and Agriculture Microdata Catalogue / AGRICULTURAL-CENSUS / TZA_2002-2003_ASCS_V01_EN_M_V01_A_OCS / variable [V988]
Agricultural-Census

Agriculture Sample Census Survey 2002-2003

United Republic of Tanzania, 2004
Get Microdata
Reference ID
TZA_2002-2003_ASCS_v01_EN_M_v01_A_OCS
Producer(s)
National Bureau of Statistics, Office of Chief Government Statistician-Zanzibar
Collections
Agricultural Censuses
Metadata
Documentation in PDF DDI/XML JSON
Created on
Oct 24, 2019
Last modified
Oct 24, 2019
Page views
114893
Downloads
3414
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • annual crop and
    vegetable
    production-long
    rainy
    seasonR072
  • annual crop and
    vegetable
    production-short
    rainy
    seasonR071
  • Cattle diseases
    R185
  • Cattle intake
    R183
  • Cattle offtake
    R184
  • Cattle
    population,
    intake and
    offtake R182
  • crop extension
    messages R152
  • crop extension
    services R151
  • crop storage
    R092
  • permanentperennial
    crops and fruit
    tree production
    R073
  • Goat diseases
    R195
  • Goat intake
    during 20022003
    R193
  • Goat offtake
    R194
  • Goat
    population,
    intake and
    offtake R192
  • Goat
    population,
    intake and
    offtake R092_1
  • Goat
    population,
    intake and
    offtakeR092_1
  • Livestock
    extension R291
  • Livestock
    extension
    service
    providers R292
  • Livestock Pest
    and Parasite
    control R220
  • Livestock
    product R250
  • marketing
    problem R102
  • marketing
    problem R103
  • Milk production
    R186
  • Milk production
    R196
  • access and use
    of resources
    R061
  • access to farm
    inputs and
    implements R121
  • access to
    functional
    Livestock
    StructuresaccessoriesR270
  • activities of
    the
    householdR022
  • Agroprocessing
    and
    by-productsR082
  • Animal
    contribution to
    crop production
    R171
  • Chicken
    diseases R240
  • credit for
    Agriculture
    purposesR13_1
  • erosion
    controlwater
    harvesting
    facilities R112
  • farm implements
    and assets used
    and owned by
    the household
    during
    2002-2003 R122
  • Fish farming
    R282
  • household
    information
    R031
  • Household
    information,
    Agriculture
    activities,
    Livestock
    informationR00
  • labour use R311
  • land
    accessownershiptenure
    R041
  • land use R051
  • livelihood
    constraints
    R162
  • livelihood
    constraintsR161
  • other Livestock
    R230
  • outlets for the
    sale of
    Livestock R260
  • related to
    respondent and
    household head
    R122_00
  • tree
    farmingagroforestry
    R142
  • use of
    secondary
    products R076
  • Pig
    diseasespestsconditions
    R215
  • Pig increase
    R213
  • Pig offtake
    R214
  • Pig population
    and production
    R212
  • Sheep diseases
    R205
  • Sheep intake
    R203
  • Sheep offtake
    R204
  • Sheep
    population,
    intake and
    offtake R202
  • R321
  • R331
  • R332
  • use of credit
    for agriculture
    purposes R130
  • use of credit
    for agriculture
    purposes R131
  • use of credit
    for agriculture
    purposes R132

District (District)

Data file: Goat population, intake and offtake R192

Overview

Valid: 42467
Invalid: 0
Type: Discrete
Width: 3
Range: -
Format: character

Questions and instructions

Categories
Value Category Cases
011 Kondoa 828
1.9%
012 Mpwapwa 285
0.7%
013 Kongwa 266
0.6%
014 Dodoma Rural 333
0.8%
015 Dodoma Urban 230
0.5%
021 Monduli 1639
3.9%
022 Arumeru 1025
2.4%
023 Arusha 150
0.4%
024 Karatu 1000
2.4%
025 Ngorongoro 1427
3.4%
031 Rombo 840
2%
032 Mwanga 308
0.7%
033 Same 281
0.7%
034 Moshi Rural 761
1.8%
035 Hai 405
1%
036 Moshi Urban 0
0%
041 Lushoto 286
0.7%
042 Korogwe 341
0.8%
043 Muheza 394
0.9%
044 Tanga 204
0.5%
045 Pangani 200
0.5%
046 Handeni 484
1.1%
047 Kilindi 398
0.9%
051 Kilosa 249
0.6%
052 Morogoro Rural 325
0.8%
053 Kilombero 52
0.1%
054 Ulanga 57
0.1%
055 Morogoro Urban 139
0.3%
056 Mvomero 142
0.3%
061 Bagamoyo 155
0.4%
062 Kibaha 34
0.1%
063 Kisarawe 41
0.1%
064 Mkuranga 27
0.1%
065 Rufiji 94
0.2%
066 Mafia 23
0.1%
071 Kinondoni 152
0.4%
072 Ilala 16
0%
073 Temeke 118
0.3%
081 Kilwa 92
0.2%
082 Lindi Rural 158
0.4%
083 Nachingwea 93
0.2%
084 Liwale 67
0.2%
085 Ruangwa 58
0.1%
086 Lindi Urban 73
0.2%
091 Mtwara Rural 169
0.4%
092 Newala 281
0.7%
093 Masasi 93
0.2%
094 Tandahimba 231
0.5%
095 Mtwara Urban 22
0.1%
101 Tunduru 166
0.4%
102 Songea Rural 402
0.9%
103 Mbinga 724
1.7%
104 Songea Urban 199
0.5%
105 Namtumbo 590
1.4%
111 Iringa Rural 103
0.2%
112 Mufindi 136
0.3%
113 Makete 338
0.8%
114 Njombe 394
0.9%
115 Ludewa 357
0.8%
116 Iringa Urban 15
0%
117 Kilolo 144
0.3%
121 Chunya 172
0.4%
122 Mbeya Rural 230
0.5%
123 Kyela 7
0%
124 Rungwe 78
0.2%
125 Ileje 283
0.7%
126 Mbozi' 255
0.6%
127 Mbarali 207
0.5%
128 Mbeya Urban 183
0.4%
131 Iramba 585
1.4%
132 Singida Rural 735
1.7%
133 Manyoni 270
0.6%
134 Singida Urban 316
0.7%
141 Nzega 454
1.1%
142 Igunga 556
1.3%
143 Uyui 371
0.9%
144 Urambo 303
0.7%
145 Sikonge 325
0.8%
146 Tabora Urban 286
0.7%
151 Mpanda 322
0.8%
152 Sumbawanga Rural 372
0.9%
153 Nkansi 232
0.5%
154 Sumbawanga Urban 204
0.5%
161 Kibondo 535
1.3%
162 Kasulu 312
0.7%
163 Kigoma Rural 320
0.8%
164 Kigoma Urban 61
0.1%
171 Bariadi 399
0.9%
172 Maswa 461
1.1%
173 Shinyanga Rural 458
1.1%
174 Kahama 469
1.1%
175 Bukombe 513
1.2%
176 Meatu 623
1.5%
177 Shinyanga Urban 409
1%
178 Kishapu 623
1.5%
181 Karagwe 453
1.1%
182 Bukoba Rural 416
1%
183 Muleba 390
0.9%
184 Biharamulo 651
1.5%
185 Ngara 643
1.5%
186 Bukoba Urban 48
0.1%
191 Ukerewe 500
1.2%
192 Magu 419
1%
193 Nyamagana 0
0%
194 Kwimba 417
1%
195 Sengerema 548
1.3%
196 Geita 625
1.5%
197 Misungwi 457
1.1%
198 Ilemela 233
0.5%
201 Tarime 697
1.6%
202 Serengeti 479
1.1%
203 Musoma Rural 562
1.3%
204 Bunda 438
1%
205 Musoma Urban 63
0.1%
211 Babati 808
1.9%
212 Hanang 672
1.6%
213 Mbulu 785
1.8%
214 Simanjiro 1204
2.8%
215 Kiteto 416
1%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Back to Catalog
Food and Agriculture Organization of the United Nations

FOLLOW US ON

  • icon-facebook
  • icon-flickr
  • icon-instagram
  • icon-linkedin
  • icon-rss
  • icon-slideshare
  • icon-soundcloud
  • icon-tiktok
  • icon-tuotiao
  • icon-twitter
  • icon-wechat
  • icon-weibo
  • icon-youtube
  • FAO Organizational Chart
  • Regional Office for AfricaRegional Office for Asia and the PacificRegional Office for Europe and Central AsiaRegional Office for Latin America and the CaribbeanRegional Office for the Near East and North AfricaCountry Offices
  • Jobs
  • |
  • Contact us
  • |
  • Terms and Conditions
  • |
  • Scam Alert
  • |
  • Report Misconduct

Download our App

© FAO 2025